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In this review, we summarize recent evidence that perceptual

learning can occur not only under training conditions but also in

situations of unattended and passive sensory stimulation. We

suggest that the key to learning is to boost stimulus-related

activity that is normally insufficient exceed a learning threshold.

We discuss how factors such as attention and reinforcement

have crucial, permissive roles in learning. We observe,

however, that highly optimized stimulation protocols can also

boost responses and promote learning. This helps to reconcile

observations of how learning can occur (or fail to occur) in

seemingly contradictory circumstances, and argues that

different processes that affect learning operate through similar

mechanisms that are probably based on, and mediated by,

neuromodulatory factors.
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Introduction
Recent behavioral and neuroscience research demon-

strates a significant degree of plasticity within the sensory

cortices [1,2]. However, the extent of the sensory

plasticity and the circumstances in which it occurs in

adult animals are matters of great debate [3–6]. The

amount of plasticity and the readiness for evoking learn-

ing processes is significantly greater during early devel-

opment than in post-ontogenetic adult systems. For

example, during early weeks of life, blocking visual input

from one eye results in dramatic restructuring of ocular

dominance maps in visual cortex, but after a few months

of age such manipulations have minimal effects [7].

Furthermore, training adult subjects for multiple weeks

on visual tasks can often fail to produce learning effects

[8] and months of training can fail to elicit plasticity in the

visual cortex [9]. Differences can be assumed to be due to
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the presence of additional mechanisms during develop-

ment that control maturation and growth processes and

that are lacking, or differently regulated, in adults (for

reviews, see [10,11]).

However, studies of perceptual learning show that, even in

adults, perceptual abilities can be sharpened with exten-

sive exposure or training. For example, experts such as

radiologists develop with training refined abilities to dis-

tinguish subtle patterns of tumors in images that show no

pattern to the untrained eye. Behavioral studies show that

effects of perceptual learning can be highly specific to the

trained stimulus features — for example, to auditory fre-

quency and intensity [12��], to digits used in tactile training

[13], or to retinotopic location [14,15], visual orientation

[16,17] and direction [15,18]. The lack of generalization is

taken as evidence that learning might be mediated by cells

in early sensory areas [19]. Recanzone et al. [20] were the

first to demonstrate that the gain in training-induced

performance was correlated with the amount of expansion

of the cortical map that represented the trained skin area,

providing the first evidence for alterations of low-level

cortical processing in perceptual learning. Adult sensory

plasticity has now been observed in all sensory systems.

Given that learning occurs in developing and adult sys-

tems, an important question in evaluating the aforemen-

tioned studies of perceptual learning is how do we know

what to learn? In other words, how does a neural system

know which information is behaviorally relevant and

which is not? There must be some mechanism that gates

what is learned (i.e. to control what aspects are allowed

and what aspects are restricted).

Numerous studies give answers to this question, but they

are typically presented in support of opposing viewpoints.

For example, evidence showing that attention has a role in

perceptual learning is presented as evidence that passive

learning does not occur [21]. Also, paradigms that show

evidence of passive learning [22–23], reinforcement pro-

cesses in learning [24–26] or how stimulation procedures

result in learning [27��,28�] are often used as evidence

against attentional learning theories. In this article, we

review perceptual learning studies from the past two years

and discuss the current prevailing views of when sensory

plasticity occurs. We attempt to reconcile how these see-

mingly contrasting views of learning can operate in parallel

with each other and through similar actions.

Attentional learning
Perceptual learning has probably been most extensively

studied in the visual modality. In such studies, subjects
www.sciencedirect.com

mailto:hubert.dinse@neuroinformatik.rub.de
http://dx.doi.org/10.1016/j.conb.2007.02.004


A common framework for perceptual learning Seitz and Dinse 149
are typically trained explicitly to distinguish visual fea-

tures, and learning is assessed by how performance or

neuronal activity is modified through training. These

studies show that learning of features is determined

not only by stimulus presentation but also by the subjects’

tasks [14,21,29]. For example, orientation tuning curves

of macaque monkey V1 cells are sharpened in relation to

the location of oriented stimuli that were discriminated

during training, but not in relation to a location where

orientated stimuli were merely exposed [17]. Similarly,

behavioral and electrophysiological studies of hypera-

cuity show that encoding of perceptual learning is

affected by specific task demands [30,31] and that

neuronal tuning curves in V1 change according to which

task the animal is performing [32].

Along similar lines, studies of tactile and haptic learning

find that extensive training yields improvements in tactile

discrimination abilities [20]. These studies also show a

lack of cortical reorganization in animals that did not

attend the stimuli during a discrimination tasks. Further-

more, electrical source localization following somatosen-

sory evoked potential recordings after finger stimulation

reveals different dipole locations for unattended versus

attended conditions, suggesting that attention has an

important role in modulating the cortical processing of

tactile information [33].

Studies of auditory learning show additional evidence of

how attention influences learning. For example, in a

recent study Polley et al. [12��] exposed rats to auditory

stimuli that varied in both frequency and intensity. Rats

that were trained to discriminate the frequency of these

stimuli demonstrated improved performance in fre-

quency discrimination and an expanded representation

in the primary auditory cortex (A1) of the 4 kHz fre-

quency used during training, whereas no such frequency-

related learning was found in animals trained on an

intensity-discrimination task. However, these animals

did demonstrate improved intensity discrimination and

expanded representation of the trained intensity range in

the suprarhinal auditory field, whereas frequency-trained

rats showed now such improvements.

Research along these lines has been taken as support for

the hypothesis that subjects need to be aware of and focus

their attention on a stimulus feature for that feature to be

learned. In this framework, focused attention mediates

selection and learning of only the information that is

deemed to be of importance.

Reinforcement and neuromodulatory systems
However, recent behavioral research has shown that

perceptual learning of visual motion can occur as a result

of mere exposure to a subliminal stimulus — that is,

without external reinforcement, the subject actively

attending to a task, or the motion-stimulus being a
www.sciencedirect.com
relevant feature of the particular task [23,24,34]. For

example, Seitz and Watanabe [24] peripherally presented

four different directions of motion an equal number of

times while subjects performed a foveal letter-identifi-

cation task. Sensitivity for each motion direction was

assessed by discrimination tasks that preceded and fol-

lowed a week of practice with the letter task. Improved

performance was found for the motion direction that was

temporally paired with the letter-task targets but not for

the other motion directions. A similar experiment showed

that learning for the paired motion direction fails during

the attentional blink of a target, indicating that learning is

gated by a reinforcement signal that is triggered by target

processing [35��]. A related study [36�] showed that depth

perceptions of bistable stimuli can be altered by classi-

cally pairing the stimuli with an additional cue.

Although direct evidence for reinforcement in visual

perceptual learning is somewhat lacking (however, see

[25]), the role of reinforcement has been clearly established

in studies of auditory learning. For example, pairing a tone

with stimulation of the ventral tegmental area (VTA),

which releases dopamine, results in increased representa-

tions of the paired tone in A1 [26]. Similarly, pairing a tone

with stimulation of the nucleus basalis of the basal fore-

brain, which releases acetylcholine, results in an increased

representation of the paired tone in A1 [37]. If the temporal

relationship between the VTA or nucleus basalis stimu-

lation and the tone presentation is reversed, such that the

tone follows the stimulation, representations of the tone in

A1 are reduced [38,39]. In human subjects, application of

an antagonist of muscarinic acetylcholine receptors (sco-

polamine) blocked the conditioning-specific enhancement

of blood oxygen-level-dependent (BOLD) responses in

the auditory cortex, implying a role for acetylcholine-

mediated modulation of experience-dependent plasticity

[40].

These findings suggest that the learning found in

behavioral reinforcement paradigms [12��,41] might be

regulated through the release of neuromodulators, such as

acetylcholine and dopamine, which gate learning, and

thus restrict sensory plasticity and protect sensory sys-

tems from undesirable plasticity. It is important to note

that these same neuromodulators have also been impli-

cated in attentional processes, and thus they might pro-

vide a mechanistic basis that is common to attentional and

reinforcement learning [4].

Passive learning
A recent coactivation paradigm developed by Dinse and

coworkers shows that improvement of tactile perform-

ance in humans can be achieved through passive, unat-

tended stimulation on a time-scale of a few hours or less

[42,43��,44–48]. Coactivation induces improvements of

tactile perceptual performance and results in cortical

reorganization. The amount of perceptual gain resulting
Current Opinion in Neurobiology 2007, 17:148–153
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from this procedure linearly correlates with the amount of

cortical reorganization, and suggests a causal relationship

[44,45,47,48]. Coactivation closely follows the principles

of Hebbian learning, which states that synchronous neural

activity drives neuronal plasticity. The Hebbian nature of

coactivation was demonstrated in a control experiment, in

which only a small skin area was stimulated (i.e. there was

no coactivation) [48]. This protocol caused neither

changes of discrimination performance nor changes in

cortical activation, implying that ‘co’-activation is indeed

crucial. Coactivation-induced improvements of tactile

acuity were large (15–20%) for short-term passive stimu-

lation, and were not much smaller than gain in perform-

ance after a year of practice in musicians (20–25%) [46].

Protocols consisting of low-frequency stimulation (LFS)

or high-frequency stimulation (HFS) can also result in

perceptual changes, with HFS improving and LFS

impairing perception [49,50].

Passive stimulation paradigms have also been shown to

cause reorganization of visual cortex. For instance, V1

plasticity can occur in mice owing to mere stimulus

exposure [51�]. Other evidence of passive visual learning

is found in situations where there are retinal lesions [52]

or macular degeneration [53]. However, other studies find

limited evidence for V1 reorganization [54��,55] and

evidence for stimulus-driven plasticity in primates

remains highly controversial (see [5,6] for discussion).

In fact, plasticity in primate visual cortex can fail even

in cases of intense training [9].

Many reports indicate that prolonged and unattended

stimulation is ineffective in driving plastic changes. In

studies of auditory learning, pairing of sensory stimulation

with electrical stimulation of the nucleus basalis has

been shown to result in rapid and selective reorganization

of cortical maps [37]. However, control experiments

revealed that sensory stimulation alone, without stimu-

lation of the nucleus basalis, was ineffective. These

apparent discrepancies with passive learning can be

settled in the light of the findings of Dinse et al. [48]

that simple (i.e. small field) prolonged stimulation had no

effect on discrimination abilities, and that more massive

‘coactive’ stimulation was required for plasticity. To

accomplish this, the sensory stimulation must take

advantage of neuronal processing principles such as

spatial (coactivation) and temporal (high-frequency) sum-

mation that work together to drive the neural system

more effectively.

Electrical and magnetic stimulation
The idea of unattended, activation-based learning has

been taken one step further still by short-cutting the

entire sensory pathway, by enforcing synchronized

activity in a specific brain region. For example, intracortical

microstimulation (ICMS) — local application of high-fre-

quency weak electrical stimulation that resembles known
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long-term potentiation (LTP) protocols — has been

demonstrated to change the sizes of receptive fields and

cortical maps in the somatosensory cortex [56]. In area 18 of

adult cats, ICMS altered the layout of visual orientation-

preference maps over a range of several millimeters [22].

Transcranial magnetic stimulation (TMS) can also

induce learning [27��,57�]. Applying 20 min of 5 Hz

TMS over an area of primary somatosensory cortex

(SI) that represents a finger caused changes that were

similar to those observed after coactivation. These

changes were paralleled by an expansion of the cortical

finger representation in SI and recovered after about 2–

3 h [27��]. Application of high-frequency TMS (�5 Hz)

during an ongoing training or stimulation procedure had a

further potentiating effect on the training outcome

[28�,58]. These TMS findings demonstrate that mean-

ingful improvement of perceptual performance can even

be obtained by specific (high-frequency) stimulation of

brain areas from outside the skull. Most notably, this

intervention does not leave the cortical processing in a

disorganized state but, on the contrary, leads to the

emergence of a different, yet organized and meaningful,

behavior as indicated by the improvement of discrimi-

nation performance.

Conclusions
In this review, we have summarized recent findings

showing that perceptual learning can occur not only under

training conditions but also in situations that lack atten-

tion and reinforcement. To explain their effectiveness,

we suggest that all these types of learning occur through a

similar process — namely, that the key to learning is that

sensory stimulation needs to be sufficient to drive the

neural system past the point of a learning threshold.

This idea is emphasized in Figure 1, which illustrates that

typical sensory inputs by themselves are not sufficient to

drive learning. However, well-known plasticity-inducing

factors such as attention or reinforcement can affect

learning by interacting with stimulus signals to surpass

this learning threshold. Furthermore, we argue that

optimization of sensory inputs (such as by synchroniza-

tion or multisensory stimulation [59�]), or magnetic or

electrical stimulation, can also boost signals that normally

are insufficient to surpass this learning threshold. In

particular, specific spatiotemporal stimulation properties

such as high-frequency, burst-like stimulation protocols,

which induce synaptic plasticity in brain-slice prep-

arations, are also effective in driving perceptual improve-

ments [41,42]. We postulate that this common learning

mechanism involves a Hebbian learning process gated by

neuromodulatory signals (e.g. acetylcholine and dopa-

mine) that are activated both in attentional and reinforce-

ment paradigms. However, further research will be

required to address this hypothesis; particularly in the

case of the passive protocols.
www.sciencedirect.com
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Figure 1

Schematic illustration of the processes that gate perceptual learning. The key assumption is that for sensory stimulation to be sufficient, it must

drive the neural system past the point of a learning threshold. Whereas simple sensory stimulation is insufficient, factors such as attention or

reinforcement have important permissive roles. In addition, sensory inputs or magnetic or electrical stimulation that are optimized to meet further

requirements such as synchronization can also boost signals that normally are insufficient to surpass this threshold. In particular, specific

spatiotemporal stimulation protocols such as high-frequency burst-like stimulation, which induce synaptic plasticity in brain-slice preparations,

are highly effective.
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